

Mission: Assist in the development of the DSEND 1 atm dive suit by producing an additively manufactured wrist piece.

Why?

The Navy needs a lightweight dive suit that eliminates the need for decompression stops during operations while providing dexterity to the diver.

Advantages of AM Dive Suits:

- Quick to produce
- Custom fit for the diver
- **Considerations:**
- Strength at Depth
- Corrosion resistance
- Compatibility with rest of the suit -

Testing

Stage 1 Testing - Ensuring a quality seal/assembly Goal: Ensure that the test assembly is capable of holding air in, and water out, when submerged at high pressures.

- Internal vacuum test
- Internal vacuum + shallow submergence

Stage 2 Testing - Material Performance Analysis Goal: Examine and note any material changes of an AM resin print after long term submersion in water. Note particularly any corrosion, or water absorption by the AM resin.

- Several week submersion of a printed resin cylinder in a saltwater environment test tank

Stage 3 Testing - Seal Duration Analysis

Goal: Ensure that the AM wrist piece is strong enough to withstand higher pressure environments and maintain an internal vacuum for extended periods of time.

pproved for Public Release

DSEND Additively Manufactured Dive Suit Piece Midshipmen 1/C Nick Aown, 1/C Juan Ayala Lago, 1/C Ross DeNicola, 1/C Jack McCabe, 1/C Stephanie von Rosenberg Advised by: CAPT Brad Baker, USN and CDR Jon Gibbs, USN

Initial Results

Stage 1: Seal/Assembly Testing

	Test Type	Depth (ft)	Pressure Held (inHg)	Duration	Notes
	1.1 Internal Vacuum	N/A	- 20.5	60 min	Initial vacuum test
	1.2 Internal Vacuum + submergence	4	- 24.7	20 min	Preliminary submergence test

Test Cylinder Characteristics Tough 2K density: 0.04 **Volume:** 4.71 in³ Surface Area: 23.56 in² **Rate of Seawater** Absorption (in grams per

Stage 2: Material Performance Test	Stage	2:	Material	Performance	Test
------------------------------------	-------	----	----------	-------------	------

day, per in²) = 0.000904

	1	Tough 2k Resin Sea Water Absorption			
94.5					
94					
		v=	0.0213x		
93.5 93					
92.5 18-Fet) 28-Feb	9-Mar	19-Mar	29-Mar	

Stage 2. Seal Duration Tests

	Test Type	Depth (ft)	Pressure Held (inHg)	Duration	Notes	
	3.0 Internal Vacuum + submergence	16	-18.5	24 hrs	Slight decrease in internal vacuum	
	3.0 Internal Vacuum	N/A	-14.5	12 days	Continuation of Test 3.0 in air	

Solidworks FEA

Simulated depth of submergence = 100m of saltwater (considered a deep, operational depth) Pressure experienced at 100m = 9.91 atm

Maximum Stress is experienced on the outer edges of the shell caps Max Stress = 1.57 ksi

Maximum deformation experienced on the outer edges of the shell caps Max Deformation = 0.004 in

Solidworks Buoyancy Analysis

Solidworks modeling was used to estimate buoyancy by comparing the weight of displaced water to the weight of the piece itself

Displaced water weight = 3.24 lbs

Special thanks to all of our supporters who made this project possible

- Limits material off-gassing
- considerations Helps to maintain a slightly negative buoyancy (desirable for suit ergonomics)

Conclusions

8-Apr

- Through the use of additive manufacturing, the Navy will likely soon have a viable method to inexpensively and rapidly produce adaptable 1 atm suits for its diving teams around the world.
- Our testing shows that additive materials can be strong enough to endure exposure to high pressures at depth, while undergoing little to no material changes.

Future Work

- AM Produced suit at large
- Integration with adjoining suit pieces
- Testing of different AM materials, and at further depths
- Testing of the long term effects of seawater on AM materials

Acknowledgements

Thank you to CAPT Baker for his steadfast commitment to our team's success.

Thank you to NAVSEA and our coordinating sponsor, Mr. Tom Hansen, for their technical guidance and research funding.

