

INTRODUCTION

Cargo parachute assemblies are used by the DoD to deliver heavy aerial supply drops. Each of these systems utilizes a component called a reefing line which assists with safe and consistent deployments of the parachute by temporarily restricting the opening diameter of the parachute. The reefing line cutter is an integral component whose function is to cut the reefing line approximately two seconds after deployment, allowing the parachutes to fully open and slow to a safe drop speed. The current reefing line cutter has been in use for 40+ years without redesign considerations, costs upwards of \$1,500, and is not reusable.

Figure 1: Opening Sequence for Supply Drops

CHALLENGE

Design an updated, reliable, and cost-effective replacement for the current de-reefing system that will satisfy all thresholds in Table 1. This solution should focus on reliability, cost effectiveness, and compatibility with current systems.

Table 1: Engineering Design Specifications List									
Characteristic	Threshold	Objective	Mech	Elec-Mec					
Delay Timer	Two seconds	Variable delay options	Objective	Threshold					
Cut through two piles of ½" tubular Nylon	With tension acting on nylon	Without tension	Testing	Threshold					
Compatible with	G-11 parachute assembly	G-16 parachute assembly	Objective	Objective					
Operating Temperature	30-100°F	-60-140°F	Threshold	Threshold					
Operation	No special handling	Pure Mechanical	Objective	Threshold					
Rigging Process	Small changes	No changes	Objective	Threshold					
Separation Method	Separate	Cut	Objective	Objective					

DESIGN

Figure 2: Mechanical Assembly

Figure 3: Electro-Mechanical Assembly

Team SNIP: Smokeless Nylon Incision Project CDTs Josh Cui '24, Amanda Dunleavy '24, Sayana Lopes '24, and Kyle Sarrazolla '24

Cutting

ANALYSIS

MATLAB and SolidWorks simulations for the heating time of the wire and the Further implementing the testing plan nylon in contact with the heating element determined that the electro-mechanical solution would be simple, yet effective within the time constraints. An ordinary Iterative design process differential equation modeling the position of the damper under a force of linearly changing magnitude offered proof of concept for a fully mechanical timing solution.

Figure 7: SolidWorks Simulation of Time to Reach Melting Point of Nylon-6

Figure 8: Damper Testing and Modeling

APPROVED FOR PUBLIC RELEASE

After Cutting

b) Figure 6: Final Prototypes. a) Mechanical Design. b) Electro-mechanical Design

FOLLOW-ON WORK

- Test reuse of expendable components: batteries, heating wire, precision blades. • Cold temperature, wind tunnel, and impact test.
- - The electromechanical design's strength will be evaluated to determine whether more robust
 - materials are required to withstand impacts in operation. Wiring will be further refined. • The mechanical design will simplify components to reduce manufacturing lead time and
 - manufacturing requirements.

CONCLUSIONS

Two competing solutions were developed to produce a superior reefing line cutter. Both the mechanical and electromechanical solutions are viable and meet all the threshold specifications. Both solutions are significantly more cost effective than the current device which enables more training and capabilities for the warfighter. These solutions can be used in conjunction with each other for increased redundancy, or further testing can determine the best solution and validate each solution. Each provides a significant launching point for future development.

	0	5	0	-	
Bill of Materials - Mechanical Design					
Part Number			Item Description		
3742K11			Adjustable	e Shock Ab	sorber with Inch Threaded Body Mc

Table 2: Engineering Design Specifications List

Bill of Materials - Mechanical Design						
Part Number	Item Description	Price Total				
3742K11	Adjustable Shock Absorber with Inch Threaded Body Mount	\$88.38				
5544N21	Trade Number 21, 1.575" Long x 3/8" Wide Blade. Pack of 5.	\$2.80				
1986K527	302 Stainless Steel Corrosion-Resistant Compression Springs	\$13.81				
2EYZ7	Aluminum Rod 7075: 1 in Outside Dia, 12 in Overall Lg,	\$22.33				
1986K525	302 Stainless Steel Corrosion-Resistant Compression Springs. 1.5" Long, 0.845" OD, 0.685" ID. Pack of 6.	\$35.82				
1968T82	High-Strength 2024 Aluminium Tube 0.083" Wall Thickness, 5/8" OD	\$38.42				
94846A214	Medium-Strength Steel Thin Hex Nut Grade 5, 5/8" - 18 Thread Size	\$5.96				
1750T24	Multipurpose 304 Stainless Steel Round Tube	\$37.52				
	Prototype: Total Cost of Materials	\$245.04				
	Current Device: Total Cost	\$1500.00				

ACKNOWLEDGMENTS

USMA Advisors: MAJ Brandon Clumpner **USMA Technician:** Mr. Gregory Mogavero **Sponsors:** Mr. Todd Grenga and Ms. Karen Dispirito, DEVCOM Soldier Center, Aerial Delivery Engineering Support Team

